Home -> Magazines -> Issues -> Articles in this issue -> View
Plasmec Systems ADAS | |
Hard Disk Recording SystemArticle from Music Technology, November 1991 |
Direct-to-disk digital recording comes of age on the Atari ST computer. Vic Lennard checks out the system which may change your life.
Like synthesis and sampling before it, direct-to-hard disk recording is coming out of professionals' studios and into those of lesser musos.
ADAS IS A stereo, 16-bit, direct-to-disk recording system running on the Atari ST. It's capable of digitising analogue audio and transferring it directly to hard drive; the ST's RAM isn't used for recording purposes, so the same computer may be used to run a sequencing program concurrently. All you need is an Atari ST, a hard drive and the ADAS hardware. What makes this interesting is that the ADAS package retails at £849 inclusive of VAT.
ADAS software comes in two forms; the main ADAS program, which allows you to record, edit and work with a cue list, and the ADAS desk accessory for recording and playing back samples while using the same Atari for a sequencer program.
ADAS itself is a plastic box measuring about 9" square. The front panel has four LEDs; Power (red), Disk active (green), Recording (red), and Digital board in use (yellow). The rear panel offers four sets of connections; a short lead connects ADAS to the hard drive (DMA) port on the Atari while a separate lead then continues the signal path to the hard drive itself. Power is via an external PSU and a six-pin DIN socket. A pair of stereo quarter-inch jacks for the audio in/out and a pair of phono sockets for the SPDIF digital in/out complete the guided tour. It's fair to say that you couldn't fit anything else on the rear panel.
Which make of hard drive you use is up to you, but the time taken to read/write to the drive needs to be reasonably short. For example, trying an Atari Megafile 60 was unsuccessful until the DMA lead connecting it to the ADAS hardware was significantly shortened. On the other hand, the DAC 44Meg removable media system worked fine. Whichever drive you use, each 10Meg gives you about one minute of stereo recording time.
As ADAS sits in-line between the Atari and the hard drive, you can use your main ST hard drive for recording but this can lead to problems. If the same disk space is being used for writing to and reading from on a daily basis, the data on the disk will become fragmented - data cannot be saved on continuous disk sectors and so are written at different places on the disk. Writing to such a disk entails movement of the read/write heads which slows down the access time, causing a situation in which ADAS will refuse to work. If the same hard drive is going to be used, it would be better to have a separate partition specifically for ADAS.
The other problem which may occur is incompatibility between the program and some STs. Atari have gone through at least five different operating systems in their computers and some are flakier than others. Plasmec have spoken with Atari and are compiling a list of problem serial numbers and possible solutions.
ON LOADING THE program (review v1.3 - v1.4 current at time of publication) you are presented with a vertical strip of icons on the left-hand side of the screen and the usual Atari menu bar along the top. Some of the icons duplicate menu selections, and various functions have keyboard equivalents to make life easier.
To make a recording, open the Transport Control window (the cassette-style icon). This has the usual transport commands as well as the sampling rate selector (48kHz, 44.1kHz and 32kHz), start time and length of sample. A MIDI Time Code stamp is recorded with a sample as standard so that the correct position within a sample can be chased when playing back synchronised to MTC. A click on the File box brings up the standard Atari file selector, at which point you type in a new file name, set the recording length and monitor the incoming audio, which passes through the A/D and D/A converters. If you hear distortion, then the incoming signal has to be reduced - there's no setting of gain option within ADAS. Also, there are no "meters" on-screen to show the approximate input level, which means that you could go into distortion part way through a recording and have to retake. Once the settings are satisfactory, click on the record button. The main Counter ticks over as the recording takes place and, at the end of the recording, the punch in and out counter shows the start and end points, ready for you to retake if necessary.
You can immediately play back the sample from its start, or from a particular point by fast forwarding or rewinding to that specific time on the main counter. Punch in and out are available; the punch times are set and then recording takes place as usual. The only problem here is that you can't hear the material before and after the punch points without recording first and then playing back - there isn't the equivalent of changing the monitoring from tape to input as on a tape recorder. That said, punching in and out is achieved very smoothly - without glitches or clicks.
IF YOU ENTER the Edit window and load the recording from disk, the waveform appears in a new window on screen. The stereo source is displayed as a pair of mono, block waveforms, one above the other, with the start and end times of the waveform displayed. To hear the entire sample, click on the loudspeaker icon; to stop at any time, press both shift keys on the keyboard.
Zooming in and out by a factor of two can take place in both horizontal (X-axis) and vertical (Y-axis) directions by using the "lollipop"-style icons. Taking the latter first, the only reason to want to zoom vertically is to see the waveform more clearly when its amplitude is small. However, if its amplitude is that small, it would be better to re-record to get a better signal-to-noise ratio, especially as ADAS doesn't have the ability to normalise a sample - this is where the sample's greatest amplitude is found, increased to the highest amplitude possible and the rest of the waveform scaled accordingly. It would have been better for this window to be resizeable to display the vertical aspect of the waveform more clearly, because although there are inches of spare space around the waveform window, you can't make use of it.
A CUE SHEET is a list of events triggered (or "cued") at specific times. In the case of ADAS, the cue sheet is the playing back of recordings, or segments of recordings, at allocated times.
The Cue screen is divided into three parts. The bulk of the screen displays the cue number, name, L/R levels, start and end times. Above this are five boxes giving the file name, start time for cue list, main clock counter, clock source (internal or MTC) and start mode. The latter lets you choose whether the cue list starts at the cue list start time (Absolute), so leaving a gap of silence before the first entry, or starts immediately with the first entry (File). Because the start time for a segment is unlikely to be at 00.00.00.00, testing a cue list takes place in File mode, while working with the final product, perhaps locked to a sequencer, would take place in Absolute mode because the gap before the first cue would correctly position that first cue. Finally, the right-hand side of the screen lets you add, delete, edit and play the entries in the cue sheet and load/save to disk.
Creating a cue list is simple. A click on the Add box brings up the usual Atari file selector from which you select the first cue. The information box which then appears tells you the length of this file and the start time, which can be altered if you wish. The left and right levels can be altered, and the Insert mode set, for which there are three options. Delete places the entry in the cue list at its start time, and deletes any existing cues whose start times fall before the end time of the entry. Shift again places the entry at its start time, but then shifts all successive cues which would otherwise be written over. Close up sets the start time of the entry as that of the nearest end time of an existing cue and then moves successive cues back to close any gaps. If an existing cue is highlighted in the cue list, then the next entry you make automatically has the start time set to the end time of this cue. Editing cues again brings up the same information box so you get a second bite at the cherry. Deleting a cue gives you the choice of simply leaving a space where that cue was, or closing up the gap by moving successive cues back. It would be useful to be able to operate the Add and Delete functions via the Insert and Delete keys on the ST, to be able to choose to edit an entry by double clicking on it or to move up and down the cue list by using the cursor keys. Obviously, key equivalents of this nature save the time taken to move monotonously back and forth across the screen.
The ability to change the levels of recordings is limited, due to the fact that you have to leave a gap of a few frames between the end of one cue and the start of the next. This is because ADAS changes the digital data as opposed to using a VCA. Consequently, level changes can be used with, say, discrete sound effects but can't be used in the context of slicing up a song and reconstructing it.
To move several cues by the same, relative, time, you can edit the start time of the first cue and then use the Shift option to make the rest follow suit. Unfortunately, you can't do multiple deletes, as you can only select one cue sheet entry at a time. Why would you want to do this? Well, let's say that you've set the markers for a segment at 04.00 and 08.00 seconds and want this to repeat four times. Save the segment, go to the cue sheet and enter it four times. Fine. Now let's say that on playback you decide that the segment is slightly too long. Back to the edit screen, change the end marker to 07.24 (assuming that 25 frames per second is being used) and save the segment with the same name. On entering the cue sheet, the end marker times haven't changed, which means that you have to delete the four cues and re-enter them. This is a definite failing of the cue screen and makes it a little user-unfriendly.
"When you're looking at a direct-to-disk system which operates with the ST and costs under 900 quid, what do you compare it with?"
If you're running ADAS on a separate computer from your sequencer, you can lock the cue sheet to your sequencer using MTC, as long as the software you are using supports this - Steinberg and Passport software does on the ST. When you record a sample, the timing is "stamped" onto the sample along its length which means that you can begin playback at a place other than the start of the sample - similar to using MIDI Song Position Pointer within a sequencer. Unfortunately, it takes around two seconds for an entry in the cue sheet to start playing upon receipt of MTC, which makes it very difficult to start at a specific position. Also, 24, 25 and 30fps formats are supported, but what happened to 30 Drop Frame? It's true that this format is rarely used, but it should still be there.
Another feature that should be included in a cue list is the ability to crossfade from one cue to another. This is where the level of an outgoing cue is reduced as that cue finishes and the level of the incoming cue increases at the same time, giving a smooth changeover of cues. While it is possible to achieve glitch-free changeovers without this function, zero-crossing points invariably have to be used when the segments are saved and this takes a lot more effort to accomplish.
AS PREVIOUSLY NOTED, you can run ADAS and a sequencer on the same ST. To help in this area, there is a desk accessory which lets you access the ADAS tracks recorded to hard drive and even to record and play back while working with the sequencer.
Both Steinberg and C-Lab have collaborated with Plasmec to establish an internal MIDI link between digital recorder and sequencer. This means that you can trigger samples from MIDI data saved within any of these manufacturer's sequencers. With C-Lab, you assign note information to Port D, while with Steinberg you use the ADAS driver which they have created. But this is running before we can walk...
WHEN YOU'RE LOOKING at a direct-to-disk system which operates with the ST and costs under 900 quid, what do you compare it with? The obvious comparison is with Digidesign's Sound Tools (for the Mac), which costs over £2000 and has been down the difficult path of testing, bug-fixing and feature-adding for a couple of years, but the reality is that there's no competition. Even the Atari version of Sound Tools required a Mega4 ST (a lesser ST with a memory upgrade wouldn't do).
Plasmec have sorted out most of the hardware problems; ADAS records to and plays back from hard drive and the audio quality is very good, if a little noisy. The current problems are with the software, and program development takes time - a lot of time.
Some of the main problems will have been sorted by the time you read this with the release of v1.4, but there are others which are of a high priority, especially the updating of cue-sheet edits which makes the cue sheet very awkward to use, and the addition of key equivalents wherever possible. I've no doubt that these will be attended to and other worthwhile features added.
Personally, I'm not convinced that a direct-to-disk system running on an Atari ST can be regarded as a fully-professional system. That said, the instances of professionals using less-than-professional gear and liking it are too many to count. Beyond (or beneath) the professionals there are plenty of other ST users who really owe it to their music to check out ADAS. The bottom line is that ADAS may well represent access to technology which would otherwise remain out of your financial reach. You might say that technology has just broken the sound barrier once again.
Price £849 with psu
More From Plasmec Systems Ltd, (Contact Details).
Plasmec ADAS - Digital Audio For The Atari ST
(SOS Nov 91)
Browse category: Software: Hard Disk Recorder > Plasmec Systems Ltd.
Review by Vic Lennard
Previous article in this issue:
Next article in this issue:
mu:zines is the result of thousands of hours of effort, and will require many thousands more going forward to reach our goals of getting all this content online.
If you value this resource, you can support this project - it really helps!
New issues that have been donated or scanned for us this month.
All donations and support are gratefully appreciated - thank you.
Do you have any of these magazine issues?
If so, and you can donate, lend or scan them to help complete our archive, please get in touch via the Contribute page - thanks!